Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70.978
Filter
1.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article in English | MEDLINE | ID: mdl-38721854

ABSTRACT

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
2.
Nat Commun ; 15(1): 3956, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730277

ABSTRACT

Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.


Subject(s)
Deep Learning , Peptides , Tandem Mass Spectrometry , Humans , Peptides/chemistry , Peptides/immunology , Tandem Mass Spectrometry/methods , Databases, Protein , Proteomics/methods , HLA Antigens/immunology , HLA Antigens/genetics , Software , Ions
3.
BMC Res Notes ; 17(1): 132, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730318

ABSTRACT

OBJECTIVES: Bovine seminal plasma proteins perform several functions related to sperm function. Changes in the expression pattern or abundance of seminal proteins are related to changes in the fertilizing capacity of bulls. Considering the role of seminal plasma proteins in sperm function and animal reproduction, we investigated changes in the protein abundance profile in response to sperm morphological changes using a proteomic approach. DATADESCRIPTION: In our present investigation, we employed liquid chromatography coupled with mass spectrometry to elucidate the proteomic composition of seminal plasma obtained from Nellore bulls exhibiting varying percentages of sperm abnormalities. Following semen collection, seminal plasma was promptly isolated from sperm, and proteins were subsequently precipitated, enzymatically digested using porcine trypsin, and subjected to analysis utilizing the Acquity nano UHPLC System in conjunction with a mass spectrometer. This dataset encompasses a total of 297 proteins, marking the inaugural instance in which a comparative profile of seminal plasma proteins in young Nellore bulls, categorized by their sperm abnormality percentages, has been delineated using LC-MS/MS. The comprehensive nature of this dataset contributes pivotal proteomic insights, representing a noteworthy advancement in our understanding of the reproductive biology of the Nellore breed.


Subject(s)
Proteome , Semen , Spermatozoa , Animals , Male , Cattle , Semen/metabolism , Semen/chemistry , Proteome/metabolism , Spermatozoa/metabolism , Tandem Mass Spectrometry , Proteomics/methods , Seminal Plasma Proteins/metabolism , Seminal Plasma Proteins/genetics , Chromatography, Liquid
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731875

ABSTRACT

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Subject(s)
Acrylamide , Cysteine , Iodoacetamide , Proteomics , Iodoacetamide/chemistry , Alkylation , Cysteine/chemistry , Cysteine/analysis , Acrylamide/chemistry , Acrylamide/analysis , Humans , Proteomics/methods , Mass Spectrometry/methods , Isotope Labeling/methods , Peptides/chemistry , Peptides/analysis , Tandem Mass Spectrometry/methods
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731967

ABSTRACT

Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.


Subject(s)
5-Hydroxytryptophan , Biosynthetic Pathways , Saccharomyces cerevisiae , Serotonin , Tryptophan , Tryptophan/metabolism , Saccharomyces cerevisiae/metabolism , Serotonin/metabolism , Serotonin/biosynthesis , 5-Hydroxytryptophan/metabolism , Melatonin/metabolism , Melatonin/biosynthesis , Tandem Mass Spectrometry , Chromatography, Liquid/methods
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732049

ABSTRACT

In this study, the variability of major glucosinolates in the leaf lamina of 134 Chinese cabbage accessions was investigated using Acquity ultra-performance liquid chromatography (UPLC-ESI-MS/MS). A total of twenty glucosinolates were profiled, of which glucobrassicanapin and gluconapin were identified as the predominant glucosinolates within the germplasm. These two glucosinolates had mean concentration levels above 1000.00 µmol/kg DW. Based on the principal component analysis, accessions IT186728, IT120044, IT221789, IT100417, IT278620, IT221754, and IT344740 were separated from the rest in the score plot. These accessions exhibited a higher content of total glucosinolates. Based on the VIP values, 13 compounds were identified as the most influential and responsible for variation in the germplasm. Sinigrin (r = 0.73), gluconapin (r = 0.78), glucobrassicanapin (r = 0.70), epiprogoitrin (r = 0.73), progoitrin (r = 0.74), and gluconasturtiin (r = 0.67) all exhibited a strong positive correlation with total glucosinolate at p < 0.001. This indicates that each of these compounds had a significant influence on the overall glucosinolate content of the various accessions. This study contributes valuable insights into the metabolic diversity of glucosinolates in Chinese cabbage, providing potential for breeding varieties tailored to consumer preferences and nutritional demands.


Subject(s)
Brassica rapa , Glucosinolates , Tandem Mass Spectrometry , Glucosinolates/analysis , Glucosinolates/metabolism , Tandem Mass Spectrometry/methods , Brassica rapa/genetics , Brassica rapa/chemistry , Brassica rapa/metabolism , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Plant Leaves/chemistry , Plant Leaves/metabolism , Principal Component Analysis
7.
Food Res Int ; 186: 114328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729714

ABSTRACT

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Subject(s)
Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
8.
Food Res Int ; 186: 114348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729721

ABSTRACT

During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.


Subject(s)
Digestion , Hot Temperature , Peptides , Soybean Proteins , Tandem Mass Spectrometry , Humans , Soybean Proteins/immunology , Soybean Proteins/chemistry , Peptides/immunology , Peptides/chemistry , Infant , Infant Formula/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Cross Reactions , Heating , Chromatography, Liquid
9.
Rapid Commun Mass Spectrom ; 38(14): e9763, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38745395

ABSTRACT

OBJECTIVE: Carotid atherosclerosis is a chronic progressive vascular disease that can be complicated by stroke in severe cases. Prompt diagnosis and treatment of high-risk patients are quite difficult due to the lack of reliable clinical biomarkers. This study aimed to explore potential plaque metabolic markers of stroke-prone risk and relevant targets for pharmacological intervention. METHOD: Carotid intima and plaque sample tissues were obtained from 20 patients with cerebrovascular symptoms of carotid origin. An untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry was utilized to characterize the metabolic profiles of the tissues. Multivariate and univariate analysis tools were used. RESULTS: A total of 154 metabolites were significantly altered in carotid plaque when compared with thickened intima. Of these, 62 metabolites were upregulated, whereas 92 metabolites were downregulated. Support vector machines identified the 15 most important metabolites, such as N-(cyclopropylmethyl)-N'-phenylurea, 9(S)-HOTrE, ACar 12:2, quinoxaline-2,3-dithiol, and l-thyroxine, as biomarkers for high-risk plaques. Metabolic pathway analysis showed that abnormal purine and nucleotide metabolism, amino acid metabolism, glutathione metabolism, and vitamin metabolism may contribute to the occurrence and progression of carotid atherosclerotic plaque. CONCLUSIONS: Our study identifies the biomarkers and related metabolic mechanisms of carotid plaque, which is stroke-prone, and provides insights and ideas for the precise prevention and targeted intervention of the disease.


Subject(s)
Biomarkers , Metabolomics , Plaque, Atherosclerotic , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Male , Female , Biomarkers/analysis , Biomarkers/metabolism , Middle Aged , Aged , Plaque, Atherosclerotic/chemistry , Plaque, Atherosclerotic/metabolism , Metabolomics/methods , Chromatography, Liquid/methods , Carotid Artery Diseases/metabolism , Metabolome
10.
J Mass Spectrom ; 59(6): e5031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726684

ABSTRACT

Managing ocular microbial infections typically requires pharmacotherapy using antibiotic eye drops, such as moxifloxacin hydrochloride (MFX), combined with an antifungal agent like amphotericin B (AB). We carried out and validated an LC-MS/MS assay to quantify these compounds in rabbit tear fluid in order to look into the pharmacokinetics of these two drugs. We employed a protein precipitation technique for the extraction of drugs under examination. A Waters Symmetry C18 column was used to separate the analytes and internal standard. The composition of the mobile phase was like (A) 0.1% v/v formic acid in water and (B) methanol. The detection of MFX and AB was accomplished through the utilization of positive ion electrospray ionization under multiple reaction monitoring mode. The linearity curves for both analytes exhibited an acceptable trendline across a concentration range of 2.34-300 ng/mL for MFX and 7.81-1000 ng/mL for AB in surrogate rabbit tear fluid. The lower limit of quantitation for MFX was 2.34 ng/mL, while for AB, it was 7.81 ng/mL. The approach was strictly validated, encompassing tests of selectivity, linearity (with r2 > 0.99), precision, accuracy, matrix effects, and stability. Consequently, we employed this method to evaluate the pharmacokinetics profiles of MFX and AB in rabbit tear fluid following single topical doses.


Subject(s)
Moxifloxacin , Tandem Mass Spectrometry , Tears , Rabbits , Animals , Tandem Mass Spectrometry/methods , Tears/chemistry , Moxifloxacin/pharmacokinetics , Moxifloxacin/analysis , Reproducibility of Results , Amphotericin B/pharmacokinetics , Amphotericin B/analysis , Limit of Detection , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/analysis , Chromatography, Liquid/methods , Ophthalmic Solutions/pharmacokinetics , Linear Models , Liquid Chromatography-Mass Spectrometry
11.
J Mass Spectrom ; 59(6): e5036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726689

ABSTRACT

Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.


Subject(s)
Curcuma , Fatty Alcohols , Tandem Mass Spectrometry , Zingiber officinale , Zingiber officinale/chemistry , Curcuma/chemistry , Tandem Mass Spectrometry/methods , Fatty Alcohols/analysis , Reproducibility of Results , Limit of Detection , Catechols/analysis , Food Analysis/methods , Curcumin/analysis , Curcumin/analogs & derivatives , Paper
12.
BMC Genomics ; 25(1): 451, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714919

ABSTRACT

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Subject(s)
Fishes , Ovary , Proteomics , Animals , Fishes/metabolism , Female , Proteomics/methods , Ovary/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome/metabolism , Proteome/analysis , Fish Proteins/metabolism , Ovum/metabolism , Egg Proteins/metabolism , Egg Proteins/analysis
13.
PLoS One ; 19(5): e0299287, 2024.
Article in English | MEDLINE | ID: mdl-38701058

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry (MS/MS) is a rapid technique for identifying intact proteins from unfractionated mixtures by top-down proteomic analysis. MS/MS allows isolation of specific intact protein ions prior to fragmentation, allowing fragment ion attribution to a specific precursor ion. However, the fragmentation efficiency of mature, intact protein ions by MS/MS post-source decay (PSD) varies widely, and the biochemical and structural factors of the protein that contribute to it are poorly understood. With the advent of protein structure prediction algorithms such as Alphafold2, we have wider access to protein structures for which no crystal structure exists. In this work, we use a statistical approach to explore the properties of bacterial proteins that can affect their gas phase dissociation via PSD. We extract various protein properties from Alphafold2 predictions and analyze their effect on fragmentation efficiency. Our results show that the fragmentation efficiency from cleavage of the polypeptide backbone on the C-terminal side of glutamic acid (E) and asparagine (N) residues were nearly equal. In addition, we found that the rearrangement and cleavage on the C-terminal side of aspartic acid (D) residues that result from the aspartic acid effect (AAE) were higher than for E- and N-residues. From residue interaction network analysis, we identified several local centrality measures and discussed their implications regarding the AAE. We also confirmed the selective cleavage of the backbone at D-proline bonds in proteins and further extend it to N-proline bonds. Finally, we note an enhancement of the AAE mechanism when the residue on the C-terminal side of D-, E- and N-residues is glycine. To the best of our knowledge, this is the first report of this phenomenon. Our study demonstrates the value of using statistical analyses of protein sequences and their predicted structures to better understand the fragmentation of the intact protein ions in the gas phase.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Bacterial Proteins/chemistry , Proteomics/methods , Algorithms , Proteins/chemistry , Proteins/analysis
14.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711037

ABSTRACT

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Subject(s)
Fertilizers , Metabolome , Nitrogen , Phlorhizin , Transcriptome , Nitrogen/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling , Tandem Mass Spectrometry , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Chirality ; 36(5): e23669, 2024 May.
Article in English | MEDLINE | ID: mdl-38747136

ABSTRACT

The aim of this study was to investigate the chiral inversion and the stereoselective pharmacokinetic profiles of desmethyl-phencynonate hydrochloride after administration of the single isomer and its racemate to beagle dogs. A liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was established for determination of the stereoisomers on chiral columns in beagle dog plasma, which met all the requirements. The chiral inversion in dogs of the desmethyl-phencynonate hydrochloride were studied after administration of the single isomer or the racemic modification. The stereoselective pharmacokinetic profiles of the desmethyl-phencynonate hydrochloride were studied by assays for simultaneous isomers after administration of the racemic modification. The results showed that the absorption of the R-configuration dosed as the single isomer was higher than it dosed as the racemic modification. The AUC(0-t), AUC(0-∞), and Cmax of the S-configuration were much higher than those of R-configuration after oral administration of the racemic desmethyl-phencynonate hydrochloride. The chiral inversion of desmethyl-phencynonate isomers could not occur in dogs after administration of the R-configuration.


Subject(s)
Tandem Mass Spectrometry , Animals , Dogs , Stereoisomerism , Tandem Mass Spectrometry/methods , Male , Chromatography, Liquid/methods , Administration, Oral , Area Under Curve
16.
Sci Rep ; 14(1): 11018, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744902

ABSTRACT

Antibody-drug conjugates (ADC) payloads are cleavable drugs that act as the warhead to exert an ADC's cytotoxic effects on cancer cells intracellularly. A simple and highly sensitive workflow is developed and validated for the simultaneous quantification of six ADC payloads, namely SN-38, MTX, DXd, MMAE, MMAF and Calicheamicin (CM). The workflow consists of a short and simple sample extraction using a methanol-ethanol mixture, followed by a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The results showed that well-validated linear response ranges of 0.4-100 nM for SN38, MTX and DXd, 0.04-100 nM for MMAE and MMAF, 0.4-1000 nM for CM were achieved in mouse serum. Recoveries for all six payloads at three different concentrations (low, medium and high) were more than 85%. An ultra-low sample volume of only 5 µL of serum is required due to the high sensitivity of the method. This validated method was successfully applied to a pharmacokinetic study to quantify MMAE in mouse serum samples.


Subject(s)
Immunoconjugates , Tandem Mass Spectrometry , Animals , Mice , Chromatography, Liquid/methods , Immunoconjugates/pharmacokinetics , Immunoconjugates/chemistry , Tandem Mass Spectrometry/methods , Workflow , Liquid Chromatography-Mass Spectrometry
17.
Se Pu ; 42(5): 420-431, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736385

ABSTRACT

The consumption of poultry eggs has increased in recent years owing to the abundance of production and improvements in living standards. Thus, the safety requirements of poultry eggs have gradually increased. At present, few reports on analytical methods to determine banned veterinary drugs during egg-laying period in poultry eggs have been published. Therefore, establishing high-throughput and efficient screening methods to monitor banned veterinary drugs during egg-laying period is imperative. In this study, an analytical method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with QuEChERS-based techniques was developed for the simultaneous determination of 31 banned veterinary drugs encompassing nine drug classes (macrolides, antipyretic and analgesic drugs, sulfonamides, antibacterial synergists, anticoccidials, antinematodes, quinolones, tetracyclines, amphenicols) in different types of poultry eggs. The main factors affecting the response, recovery, and sensitivity of the method, such as the extraction solvent, purification adsorbent, LC separation conditions, and MS/MS parameters, were optimized during sample pretreatment and instrumental analysis. The 31 veterinary drug residues in 2.00 g eggs were extracted with 2 mL of 0.1 mol/L ethylene diamine tetraacetic acid disodium solution and 8 mL 3% acetic acid acetonitrile solution, and salted out with 2 g of sodium chloride. After centrifugation, 5 mL of the supernatant was cleaned-up using the QuEChERS method with 100 mg of octadecylsilane-bonded silica gel (C18), 50 mg of N-propylethylenediamine (PSA), and 50 mg of NH2-based sorbents. After nitrogen blowing and redissolution, the 31 target analytes were separated on a Waters CORTECS UPLC C18 analytical chromatographic column (150 mm×2.1 mm, 1.8 µm) at a flow rate, column temperature, and injection volume of 0.4 mL/min, 30 ℃, and 5 µL, respectively. Among these analytes, 26 analytes were acquired in dynamic multiple reaction monitoring (MRM) mode under positive electrospray ionization (ESI+) conditions using (A) 5 mmol/L ammonium acetate (pH 4.5) and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-30%B; 2.0-7.5 min, 30%B-50%B; 7.5-10.0 min, 50%B; 10.0-10.1 min, 50%B-100%B; 10.1-12.0 min, 100%B; 12.0-12.1 min, 100%B-12%B; The five other target analytes were acquired in MRM mode under negative electrospray ionization (ESI-) conditions using (A) H2O and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-40%B; 2.0-6.0 min, 40%B-80%B; 6.0-6.1 min, 80%B-100%B; 6.1-8.0 min, 100%B; 8.0-8.1 min, 100%B-12%B. Matrix-matched external standard calibration was used for quantification. The results showed that all the compounds had good linear relationships within their respective ranges, with correlation coefficients of >0.99. The limits of detection (LODs) and quantitation (LOQs) were 0.3-3.0 µg/kg and 1.0-10.0 µg/kg, respectively. The average recoveries of the 31 banned veterinary drugs spiked at three levels (LOQ, maximum residue limit (MRL), and 2MRL) in poultry eggs ranged from 61.2% to 105.7%, and the relative standard deviations (RSDs) ranged from 1.8% to 17.6%. The developed method was used to detect and analyze banned veterinary drugs in 30 commercial poultry egg samples, including 20 eggs, 5 duck eggs, and 5 goose eggs. Enrofloxacin was detected in one egg with a content of 12.3 µg/kg. The proposed method is simple, economical, practical, and capable of the simultaneous determination of multiple classes of banned veterinary drugs in poultry eggs.


Subject(s)
Drug Residues , Eggs , Tandem Mass Spectrometry , Veterinary Drugs , Tandem Mass Spectrometry/methods , Animals , Veterinary Drugs/analysis , Eggs/analysis , Chromatography, High Pressure Liquid/methods , Drug Residues/analysis , Poultry , Food Contamination/analysis
18.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736387

ABSTRACT

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Subject(s)
Animal Feed , Food Contamination , Indoles , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animal Feed/analysis , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Indoles/analysis , Mycotoxins/analysis
19.
Se Pu ; 42(5): 474-480, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736391

ABSTRACT

A method was established for the simultaneous detection of 12 prohibited veterinary drugs, including ß2-receptor agonists, nitrofuran metabolites, nitroimidazoles, chlorpromazine, and chloramphenicol, in pig urine. The sample was pretreated by enzymolysis, acid hydrolysis/derivatization, and liquid-liquid extraction combined with solid-phase extraction. Detection was performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Ammonium acetate solution (0.2 mol/L, 4.5 mL) and ß-glucuronidase/aryl sulfatase (40 µL) were added to the sample, which was subsequently enzymolized at 37 ℃ for 2 h. Then, 1.5 mL of 1.0 mol/L hydrochloric acid solution and 100 µL of 0.1 mol/L o-nitrobenzaldehyde solution were added to the sample. The mixture was incubated at 37 ℃ for 16 h, and the analytes were extracted with 8 mL of ethyl acetate by liquid-liquid extraction. The lower aqueous phase obtained after extraction was extracted and purified using a mixed cation-exchange solid-phase extraction column. The extracts were combined, the extraction solution was blow-dried with nitrogen, and the residue was redissolved for determination. The samples were analyzed under multiple-reaction monitoring mode with both positive and negative electrospray ionization, and quantified using an isotope internal standard method. The correlation coefficients (r) of the 12 compounds were >0.99. The limits of detection (LODs) and quantification (LOQs) of chloramphenicol were 0.05 and 0.1 µg/L, respectively, and the LODs and LOQs of the other compounds were 0.25 and 0.5 µg/L, respectively. The mean recoveries and RSDs at 1, 2, and 10 times the LOQ were 83.6%-115.3% and 2.20%-12.34%, respectively. The proposed method has the advantages of high sensitivity, good stability, and accurate quantification; thus, it is suitable for the simultaneous determination of the 12 prohibited veterinary drug residues in pig urine.


Subject(s)
Drug Residues , Tandem Mass Spectrometry , Veterinary Drugs , Animals , Tandem Mass Spectrometry/methods , Swine , Chromatography, High Pressure Liquid/methods , Veterinary Drugs/urine , Veterinary Drugs/analysis , Drug Residues/analysis , Chloramphenicol/urine , Chloramphenicol/analysis
20.
Endocrinol Diabetes Metab ; 7(3): e00484, 2024 May.
Article in English | MEDLINE | ID: mdl-38739122

ABSTRACT

OBJECTIVE: This study investigates the metabolic differences between normal, prediabetic and diabetic patients with good and poor glycaemic control (GGC and PGC). DESIGN: In this study, 1102 individuals were included, and 50 metabolites were analysed using tandem mass spectrometry. The diabetes diagnosis and treatment standards of the American Diabetes Association (ADA) were used to classify patients. METHODS: The nearest neighbour method was used to match controls and cases in each group on the basis of age, sex and BMI. Factor analysis was used to reduce the number of variables and find influential underlying factors. Finally, Pearson's correlation coefficient was used to check the correlation between both glucose and HbAc1 as independent factors with binary classes. RESULTS: Amino acids such as glycine, serine and proline, and acylcarnitines (AcylCs) such as C16 and C18 showed significant differences between the prediabetes and normal groups. Additionally, several metabolites, including C0, C5, C8 and C16, showed significant differences between the diabetes and normal groups. Moreover, the study found that several metabolites significantly differed between the GGC and PGC diabetes groups, such as C2, C6, C10, C16 and C18. The correlation analysis revealed that glucose and HbA1c levels significantly correlated with several metabolites, including glycine, serine and C16, in both the prediabetes and diabetes groups. Additionally, the correlation analysis showed that HbA1c significantly correlated with several metabolites, such as C2, C5 and C18, in the controlled and uncontrolled diabetes groups. CONCLUSIONS: These findings could help identify new biomarkers or underlying markers for the early detection and management of diabetes.


Subject(s)
Carnitine/analogs & derivatives , Metabolomics , Prediabetic State , Tandem Mass Spectrometry , Humans , Prediabetic State/diagnosis , Prediabetic State/metabolism , Metabolomics/methods , Male , Tandem Mass Spectrometry/methods , Female , Middle Aged , Adult , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Blood Glucose/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Aged , Biomarkers/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/diagnosis , Metabolome , Glycemic Control
SELECTION OF CITATIONS
SEARCH DETAIL
...